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The “Student” of
the Student’s t-Test

By Brian R. Page

A major theme in physics over the past few centuries has been the quest
for greater accuracy in measurements. Consider the positional astronomy
of Tycho Brahe in the sixteenth century. Johannes Kepler used Tycho’s extremely
precise measurements of planetary motions to detect an eight-arc-minute anomaly
in the orbit of Mars. This breakthrough finally provided a quantitative observa-
tional basis to the Copernican heliocentric theory. Whereas Nicolaus Copernicus
possessed no information not available to ancient observers, Kepler’s achievement
was a direct result of improved accuracy.

In recent times the need for increasingly accurate time keeping has resulted in
the routine worldwide availability over shortwave radio of a transmitted time
signal accurate to 0.00001 seconds. Similarly, nearly all physical constants, from
pi to the Hubble parameter describing the expansion of the universe, are further
refined with each passing year.

This steady improvement in measurements of all sorts has resulted in part from
improved instrumentation. However, as instruments improved, experimenters ran
smack into the fact that there is no such thing as a perfect measurement. Any
measurement along a continuous scale, as opposed to counts of discrete objects,
is subject to a variety of influences. The continuous scale itself, by definition,
contains an infinite number of points. Increasing accuracy merely reduces the
uncertainty of the value.

The need to understand variations in measurements led to important concepts
in statistics such as bias, mean, and standard deviation. The practice in statistics
concerned with the meaning of measurement is known as the analysis of variance.
This field formally developed only in the last century, beginning with a significant
insight by a little-known chemist working in Ireland and writing under the
pseudonym “Student.” In this article we will look at Student’s ¢-test of statistical
hypothesis and learn something about the man who articulated a relationship
fundamental to every experimenter. Before turning to the life of Student, let’s
review some basic statistics.

Statistics

Statistics has an unfortunate reputation as being difficult, mysterious, and able
to “prove” any proposition. Admittedly, advanced statistics can be quite compli-
cated. However, the basic principles are rather straightforward and can be of
enormous benefit to experimenters at even the earliest stage of their education.
Let’s begin with average.

Taking an arithmetic mean from a number of measurements is almost second
nature. The mean, or average, is simply the sum of all measurements divided by
the number of measurements. In most work, where tolerances are not of critical
importance and it is not necessary to actually calculate error margins, the mean
suffices to characterize a physical property. This is especially true when it can be
easily seen that the individual measurements do not display a significant range.
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Doubts about the value of the mean begin to creep into the
picture when a series of measurements shows a good scatter.
Aseries of observations of the brightness of a star might differ
by a magnitude or more. These differences could reflect
inexperienced observers, poor eyesight, defective optics, or
a number of other sources of error. Can we simply accept the
average without considering some of these problems? Can
we report the average but qualify it with some value reflect-
ing the quality of the data?

Consider a student opinion poll on what kind of music to
play during a class party. When asked to rate two types of
music on a scale from 1 to 10, the average was close to five.
Does this mean that the students really did not care? Of
course not! Music is a topic

useful in identifying any extremes that might exist in a set of
data, as in the survey of music preferences. With a thorough
understanding of standard deviation, a mere average by itself
will never again seem adequate.

Calculation of a standard deviation from a collection of
measurements is a five-step process.l Standard deviation is

equal to
o [rEey (0
- n—1

The numerator, X (dev)z, is determined by subtracting
each measurement from the mean, squaring the result, and
summing the squares. In

about which students hold
very strong opinions.
When rock and roll was
pitted against country mu-
sic, approximately half of
the students rated country a

the denominator (n — 1), n
is the number of samples or
measurements of a given
population. Table II shows
the same measurements as
Table I, this time with ad-

10 and rock and roll 1. The VoL VI MARCH, 1908 No- 1 ditional calculations.
students favoring rock apd Along with each measure-
roll reported the opposite BIOMETRIKA. ment of temperature, I

ranking. Although the av-
erage was five, we can
clearly see that this metric
did not tell the whole story.
We need some way to show
that although the average
was in the middle of our
range, the individual meas-
urements varied consider-

ably‘ Now any series of experiments is only of value in so far as it enables us to form
a judgment as to the statistical constants of the population to which the experi-
In a great number of cases the question finally turns on the value
of a mean, either directly, or as the mean difference between two quantities.

Here is a more practical
example: let’s assign two
teams of students the task

ments belong.

THE PROBABLE ERROR OF A MEAN.

By STUDENT.

Introduction.

ANY experiment may be regarded as forming an individual of a * population *
of experiments which might be performed under the same conditions. A series
of experiments is a sample drawn from this population.

have now included the dif-
ference with the mean, the
square of this difference,
and the quotient of the dif-
ference divided by the
standard deviation. For the
moment, ignore this last
column.

Referring to the data for
Team Alpha, we can easily
verify the table. The sum of
the squares is 0.204. This

of measuring the tempera-
ture of a sample of water.
They are directed to make
ten individual measurements using an ordinary laboratory
thermometer calibrated in Celsius. We will call the teams
Alpha and Zed. Each student must estimate the temperature
to one-tenth of a degree. The results are shown in Table L.
At first glance, we can see that the average temperatures
determined by the two teams are remarkably close. Now let’s
look more closely at the individual measurements and see if
we should place more confidence in one team or the other.
To do this, we will turn to the standard deviation, which will
eventually take us into the heart of Student’s -test.
Standard deviation is the key to understanding the diver-
sity of measurements that go into an average. It is useful in
determining the intrinsic error inherent in any series of meas-
urements, as in the water temperature example. It is also

University College London.
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Beginning of the landmark paper by Student. lllustration courtesy of

amount, divided by 9
(which is one less than the
number of measurements)
is approximately equal to
0.0227, the square root of which is 0.15. Compare the stand-
ard deviations between the two teams. Although the averages
differ by only two-hundredths of a degree Celsius, it is
apparent that Team Alpha had less scatter in their measure-
ments. Does this mean that Team Alpha did abetter job? Does
it mean that their measurements are closer to the true, but
unknown water temperature? Not necessarily. If all consid-
erations of bias, instrumental error, and faulty technique were
equal between the two teams, then we might say that Team
Alpha’s result is closer to the truth. However, we may simply
have discovered that the members of Team Alpha shared their
measurements as they made them, thus influencing sub-
sequent measurements. The value of an experiment cannot
be determined solely through statistical calculations. An ex-

VOL. 33, NOV. 1995 THE PHYSICS TEACHER 491




Toeam Alpha Toam Zed o Team Alpha
rees C  difference squared dif/sd
1 DO%;@;S ¢ Degr::; c 1 143 -0.24 0.0576 -1.59411
. . 2 14.4 -0.14 0.0196 -0.9299
2 14.4 14.3 3 144 -0.14 0.0196 -0.9299
3 14.4 144 4 145 -0.04 0.0016 -0.26568
4 14.5 14.4 5 14.5 -0.04 0.0016 -0.26568
b : 6 14.6 0.08 0.0036 0.398527
5 14.5 14.5 7 14.6 006  0.0038  0.398527
6 14.6 14.6 8 146 0.06 0.0036 0.398527|
7 14.6 14.7 9 14.7 0.16 0.0256 1.06273
. s 10 14.8 0.26 0.0676 1.72694
8 14.6 14.8 Mean 14.54
Sum of the squares 0.204
190 ::g :‘I:g |Standard Deviation 0.150555
Moan 14.54 14.66
Table I. Measurements of water temperature by Teams Alpha and Team Zed
Zed; for convenience results are sorted numerically. Dogrees C  difference  squared dif/sd
1 14.2 -0.36 0.1296 -1.521 28ﬂ
perimenter must take into account all possible sources of § ::i 3?: ggg;g —(;162222
error, 'blas, and uncertainty, Statistics only helps identify and 4 14.4 0.16 0.0256 0.67612
quantify errors. 5 145 -0.06 0.0036 -0.25355
The usual technique for minimizing error is to make a 6 1486 0.04 0.0016 0.169031
large number of independent measurements. In general, this 7 14.7 0.14 0.0196 0.591608
is the best approach for avoiding bias. 8 14.8 024  0.0576  1.014185
Now let’s look at the last column in Table II, the difference 13 : :-g gg: g.??;g 1.014185
divided by the standard deviation. This leads us into the Mean 14, 56 - - 1.436762
normal error curve. The normal error curve, or normal distri- Sum of the squares 0.504
bution, is pervasive in nature. Such a curve describes a wide Standard Devlation 0.236643

variety of natural phenomena. For our purposes, the normal
error curve is almost always a good fit when describing the
scatter of values apparent in any large set of measurements.
In brief, the normal error curve shows us that the number of
measurements close to the average will predominate over
measurements farther from average. Quantitatively, about
two-thirds of all measurements will reside within one stand-
ard deviation on either side of the average. This is an extraor-
dinary generalization in that it holds for such diverse phe-
nomena as the growth of mollusks, the dripping of rainwater
from the gutter of my house, the sizes of digestive stones in
adinosaur’s gut, and student scores on standardized tests. See
Fig. 1 for a graph of a perfect normal

Table Il. Initial measurements of Teams Alpha and Zed examined
more critically.

see the sidebar on page 496, A Straight Line to a Normal
Curve.

After learning about standard deviation and the normal
error curve, we will assign teams Alpha and Zed the task of
improving their estimates of the temperature of the water. In
the examples, we have cited rather small samples of data. In
part, this was for economy of space. But it also matches the
situation faced by the man known as Student.

€ITor curve.

This consideration shows us graphi-
cally why we desire a small standard
deviation in any set of measurements. ]
The width of the curve is entirely de- T
pendent on the standard deviation. If we
are to say with any confidence that a T
mean approximates some real value, t
then we need a narrow curve. Looking at
the last column for the Team Alpha data

4% 34%

confirms, even in a very small sample, a 2

our generalizations. Seven of the ten
measurements lie within 1 to —1 standard
deviations. For additional information
on achieving a normal error distribution,
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Fig. 1. Normal law of error. For sample populations that are distributed normally, the
shape of the curve is defined by the mean and the standard deviation. As shown, 68%
of measurements fall within one standard deviation of the mean; another 28% lie between
one and two standard deviations.
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William Sealy Gosset
(1876-1937)

The firm of Arthur
Guinness Son & Company
was already 140 years old
when young William Sealy
Gosset began his employ-
ment there in 1899. Gosset
was fresh from Oxford
University, having studied
mathematics and taken a
degree in chemistry. His
employment was, in itself,
something of an experi-
ment, for Guinness had
only recently initiated the
practice of hiring univer-
sity men with training in
science. This novelty was
compounded by incorpo-
rating these graduates di-
rectly into the work of the
brewery, not relegating
them to strict scientific or
technical assighments.

Fairly soon after his arrival in Dublin, Ireland, where he
would make his home for the next 36 years, Gosset was
provided with an abundance of raw data relating to the
operations of the brewery. The Guinness product was the
result of exacting procedures carried out with only four basic
ingredients: barley, hops, water, and yeast (see photo at
bottom of this page). However, the simplicity of the ingredi-
ents belies the corhplexity of the process. Guinness had
earlier established an experimental unit to research the ef-
fects of variations in their procedures. Slight changes in
initial conditions, ingredients, processing times, and tem-
peratures could
greatly alter the
finished product.
The managers of
the company
wished to better
understand these
variations. Thus,
Gosset, being the
most mathemati-
cally gifted of the
recent university
graduates, was di-
rected to analyze
the data.?

In 1904, Gosset
reported on his
progress. He ad-
vocated the use of
statistical meth-
ods, commenting:

William Sealy Gosset, the “Stu-
dent” of Student’s f-test, spent
his entire professional career
with Arthur Guinness Son &
Company as a brewer. A collabo-
rating statistician, E.S. Pearson,
remarked that “the name of ‘Stu-
dent’ was associated In statisti-
cal circles with an atmosphere
of romance.” Photograph cour-
tesy of Arthur Guinness Son &
Company.

“The ‘Student’ of the Student’s t-test”

Agricultural experiments with test fields of barley and hops were perfect candidates for
Gosset's new techniques of evaluating small sample populations. The bags of hops in
this photograph await inspection at the Guinness Dublin brewery around the turn of the
century. Photograph courtesy of Arthur Guinness Son & Company.

“It may seem strange that reasoning of this nature has not
been more widely made use of, but this is due: (1) To the
popular dread of mathematical reasoning. (2) To the fact that
the results [conventionally obtained] are well within the
accuracy required.”3 A central problem facing the laboratory
was that the complexity of their procedures prevented the
numerous replication of experiments in attempts to minimize
error. This constraint, which was common in industrial situ-
ations, had not been adequately addressed by the more theo-
retical academic statisticians of the time. Gosset concluded
his initial report with the recommendation that more ad-
vanced statistical techniques be brought to bear on the work
of the laboratory.

As a result of his findings, communication was estab-
lished between Gosset, working in Dublin, and Karl Pearson
(1857-1936), probably the leading statistician of the day in
Britain. Pearson headed the Biometric Laboratory of Univer-
sity College London and had recently begun publication of
the journal Biometrika. In advance of their first meeting,
Gosset composed four questions that came to characterize his
lifelong interest in the analysis of variance. Gosset sought
assistance in:

= relating the economic impact of changes in procedure to
the costs of experimentation.

s determining the probability that his measurements
closely describe an unknown value. As Gosset wrote, if
the number of measurements, “n were infinite, I could
say ‘it is 10:1 that the truth lies within 2.6 of the result of
the analysis’. As however n is finite and in some cases
not very large, it is clear that I must enlarge my limits,
but I do not know by how much.”

s jdentifying correlation between supposedly independent
observations.

= and finally, identifying books that would be useful.®

From Pearson, Gosset obtained immediate assistance par-
ticularly in methods of dealing with correlation. A more

important upshot of their introduction was that in 1906,

Gosset was sent by
his employer to
study for a year at
the Biometric
Laboratory. While
in London, Gosset
tackled the prob-
lems outlined in
his first letter to
Pearson. The re-
sults were published
as a series of papers
in Biometrika. The
second of these pa-
pers, “The Probable
Error of a Mean,”

7 O / ; & .7 maks Gosset’s

place in history (see
illustration on
page 491).
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For publication, Gosset assumed the pseudonym “Stu-
dent.” Recall that he was essentially an industrial chemist
working in a very competitive field. His employer, conscious
of the new techniques they were introducing into their proc-
essing, wished to protect whatever competitive advantage
was offered by this statistical work. Thus, the writing was
pure statistics, containing no link to the barley, hops, water,
and yeast that inspired the problems; the pseudonym pre-
vented ready identification of the author with the employer.
Competitors would have little help in relating Gosset’s theo-
retical discoveries with changes in brewing. The rather un-
usual pseudonym “Student” was chosen by Gosset in honor
of Karl Pearson, his “professor.”

The t-Test

In the introduction to “The Probable Error of a Mean,”
Gosset succinctly states his problem: “it is sometimes neces-
sary to judge of the certainty of the results from a very small
sample.” This is the second question originally posed to
Pearson. Gosset continues by explaining, “although it is well
known that the method of using the normal curve is only
trustworthy when the sample is ‘large’, no one has yet told
us very clearly where the limit between ‘large’ and ‘small’
samples is to be drawn. The aim of the present paper is
to...furnish alternative tables for use when the number of
experiments is too few.”S

Gosset arrived at his new understanding by analyzing the
relationship of the mean of a population, the estimate of that
mean, and the standard deviations. For

specified with the constant ¢. For an example, refer to the data
from Team Alpha. The standard deviation of the sample, 0.15
divided by the square root of the number of measurements
less one, is equal to 0.05. Now we must select an appropriate
value for ¢.

If we wish for the interval to have a 50% chance of
encompassing the unknown value, then we select a value for
t close to 0.7. The product is 0.035, providing an interval of
14.51 to 14.58 degrees. In other words, we have a fifty-fifty
chance that the temperature of the water actually lies between
14.5° and 14.58° Celsius. We can increase our certainty by
using another value for . To achieve 99% probability, substi-
tute for ¢ the value 3.2. This provides a delta of 0.16 and an
interval of 14.38 to 14.70 degrees.

Note that as the level of confidence increases, the delta
grows larger, and the interval widens. Now carefully consider
the equation. The number of measurements, in the denomi-
nator, is taken into account only through its square root. Thus,
itis difficult to achieve greater accuracy merely by increasing
the number of measurements. The most benefit accrues by
lowering the standard deviation in the numerator. Also, refer
to the more complete list of ¢ values in Table III. The values
of these constants reinforce the diminishing returns relation-
ship. Scan the column for 99% probability. It should be
obvious that increasing the number of measurements beyond
ten or so does not greatly improve the chances that our
interval includes the actual value.

experimental data, he drew upon a table Probabillity
listing the height and left middle finger n-1 0.99 0.9 0.8 0.7 0.6 0.5
measurements of 3,000 criminals. He 1 63.655898| 6.3137486| 3.0776846| 1.962612| 1.376382| 1.000001
first calculated the parameters for the 2 | 9.92498826] 2.9199873| 1.885619| 1,386206| 1.06066| 0.816497
entire population under study and then 3 | 584084773 2.353363| 1.6377453| 1.249778| 0.978472| 0.764892
drew four random samples, each of 750 4 | 4.60408046] 2.1318465| 1.5332057| 1.189567| 0.940964| 0.740697
measurements, for comparison against 5 | 4.03211743] 2.0150492| 1.4758848| 1.155768| 0.919543| 0.726687
tho wholo. This b s decicled] 6 | 3.70742782| 1.9431809| 1.4397551| 1.134157| 0.905703| 0.717558
€ whole. 1 s approach was decided’y 7 | 3.49948095] 1.8945775| 1.4149236] 1.119159| 0.89603] 0.711142
empirical; Gosset was perhaps lucky in 8 | 3.35538061| 1.8595483| 1.3068156] 1.108145| 0.88889] 0.706386
quantifying the error in a way that was 9 | 3.24984285| 1.8331139] 1.3830288| 1.099716| 0.883404] 0.702722
later demonstrated to be optimum. 10 | 3.16926162| 1.8124615| 1.3721842| 1.093058| 0.879057| 0.699812
In this 1908 paper, Gosset expressed 11 | 3.10581527| 1.7958837| 1.3634303] 1.087667| 0.87553| 0.697445
the original formulation of what has 12 | 3.05453796| 1.7822867| 1.356218| 1.083212| 0.872609] 0.695483
since become known as Student’s z-test 13 | 3.01228283| 1.7709317] 1.3501722| 1.079469| 0.870151] 0.69383
of statistical hypothesis. In its modern 14 | 2.97684892| 1.7613092; 1.3450313| 1.07628| 0.868055| 0.692417
form, as we shall see, Gosset related a 15 2.94672645| 1.753051| 1.3406054| 1.073531| 0.866245| 0.691197
table of constants, , with the probability 16 | 2.92078767| 1.7458842] 1.3367571| 1.071137| 0.864667| 0.690133

17 2.8982322( 1.7396064| 1.3333795| 1.069034| 0.863279| 0.689195
18 | 2.87844159| 1.7340631| 1.3303907| 1.067169| 0.862049| 0.688364
19 | 2.86094291| 1.7291313| 1.3277281| 1.065507| 0.86095| 0.687621

that a mean closely approximates . the
unknown value it attempts to describe.

The formula, 20 | 2.84533598|  1.724718| 1.3253407| 1.064016| 0.859965| 0.686954
] 2 21 | 2.83136615] 1.7207435| 1.3231875| 1.06267| 0.859075| 0.686352

A=t 22 | 2.81876055| 1.7171442| 1.3212366| 1.061449] 0.858266| 0.685805

Nn -1 23 | 2.8073373]  1.71387] 1.3194608] 1.060337| 0.85753| 0.685307

, 24 | 2.79695087| 1.7108823] 1.3178351] 1.059319| 0.856855] 0.68485

produces a delta which, when subtracted 25 | 2.78743755| 1.7081402| 1.3163458| 1.058385| 0.856236| 0.68443

from and added to the mean, provides an
interval in which the unknown value
may lie according to the probability

Table lll. Values of Student’s t constant for selected probabilities between 99% and 50%,
for two to 26 measurements. Table generated using Microsoft Excel with the TINV
function.
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Although Gosset immediately put his findings into use at
the Guinness laboratory, his work was largely ignored for the
next several years by academic statisticians. The reason for
this relates to Gosset’s original motivation: only in an indus-
trial setting was there such concern over reaching support-
able conclusions on the basis of so few measurements. Years
later, Gosset articulated his predicament to a correspondent:

You see one must experiment and frequently it is quite out of the
question, from considerations of cost or of impossibility of
duplicating conditions in the time scale, to do enough repetitions
to define one’s variability as accurately as one could wish. It’s
no good saying *“Oh these small samples can’t prove anything.”
Demonstrably small samples have proved all sorts of things and
it is really a question of defining the amount of dependence that
can be placed on their results as accurately as we can. Obviously
we lose by having, a poor definition of the variability but how
much do we lose?

Nevertheless, Gosset’s preoccupation with small sample
sizes stressed existing statistical technique and eventually led
to improvements in handling the more customary larger
populations. According to statistician Egon S. Pearson, son
of Karl Pearson, the existing imperfections were of “small
consequence” with large samples but completely evident in
the “absurdly small numbers” of Gosset’s.® In this way,
Gosset’s contributions extended greatly beyond small sample
technique and truly set the foundation for the analysis of
variance.

Although Gosset was first motivated by problems uncov-
ered in the experimental brewery, he was later quite active in
extending his techniques to agricultural experiments con-
ducted by the Irish Department of Agriculture. The tech-
niques pioneered by Gosset were eventually extended and
popularized by Ronald A. Fisher (1890-1962). Writing to
Gosset while still a student, Fisher proposed that the numera-
tor in the standard deviation be n — 1 instead of simply n, as
Gosset had assumed. Responding to this correction, Karl
Pearson wrote that such a refinement mattered little “because
only naughty brewers take n so small that the difference is
not of the order of the probable error!™ From this beginning,
Gosset and Fisher established a lifelong collaboration. In-
deed, it was Fisher in 1924, who first introduced the term
“t-test.” Gosset immediately accepted the new formulation
and published extended values for 110

To see Student’s z-test in action, let’s return to teams Alpha
and Zed and their attempts to determine more accurately the
temperature of some water. Not knowing of Student’s -test,
the two teams approached the problem differently. Their
results are shown in Table IV. Team Alpha again made only
ten measurements. However, they found a magnifying glass
that they put to good use in reading the thermometer. Team
Zed kept the usual technique but made 20 readings. Fortu-
nately, both averages are very close. The real difference
shows with the standard deviations. Team Alpha’s standard
deviation is three times less than that of Team Zed’s. This
advantage translates into a higher degree of confidence as
can be seen through the r-test. Using values for 90% prob-
ability, Team Alpha has an interval of 14.5 to 14.6 degrees.
By contrast, Team Zed, even with ten additional samples, has

“The ‘Student’ of the Student’s ¢-test”

Team Alpha
Degrees C  difference squared
1 144 -0.15 0.0225
2 145 -0.05 0.0025
3 145 -0.05 0.0025
4 145 -0.05 0.0025
5 14.5 -0.05 0.0025!
6 146 0.05 0.0025
7 146 0.05 0.0025
8 146 0.05 0.0025
9 146 0.05 0.0025
10 14.7 0.15 0.0225
Mean 14.58
Sum of the squares 0.065
Standard Deviation 0.08498366
Team Zed
Degrees C difference squared
1 14 -0.56 0.3136
2 14 -0.56 0.3136
3 14.2 -0.36 0.1296
4 14.3 -0.26 0.0676
5 143 -0.26 0.0676
6 144 -0.16 0.0676
7 14.5 -0.06 0.00364§
8 145 -0.06 0.0036
9 14.6 0.04 0.0016
10 14.6 0.04 0.0016
11 146 0.04 0.0016
12 147 0.14 0.0196
13 147 0.14 0.0196
14 147 0.14 0.0196
15 147 0.14 0.0196
16 147 0.14 0.0196
17 148 0.24 0.0576
18 14.9 0.34 0.1156
19 15 0.44 0.1936
20 15 0.44 0.1936
Mean 14.56
Sum of the squares 1.63
Standard Deviation 0.2891

Table IV. Results of different strategies by Team Alpha and Team
Zed to improve their estimates of the water temperature.

aninterval from 14.44 to 14.68 degrees. For 90% confidence,
Team Zed has an interval more than twice as wide as Team
Alpha’s!

Student’s t-test has, from time to time, been taken to
provide a perhaps unwarranted legitimacy to small samples.
Gosset himself never fell into this trap. In his 22 papers
published between 1907 and his death in 1937, he referred
frequently to the necessity of gathering significant numbers
of observations, striving rigorously to eliminate error and
bias, and routing out spurious correlation. Indeed, he repeat-
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edly warned that “tables can only be an
aid to, and not a substitute for, common
sense.”!!

As Team Zed learned, Gosset not only
left us a powerful tool for evaluating
small sample populations, but he also
showed that we cannot compensate for
the lack of accuracy in individual meas-
urements merely by increasing their
number.
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