MORE ABOUT POWER SUPPLIES
TWO 250 MA PLATE POWER SUPPLIES
WITH EXCELLENT DYNAMIC CHARACTERISTICS

also

a power control unit

In the previous issue of G-E HAM NEWS we presented a
discussion of the dynamic characteristics of plate power
supplies ordinarily used with amateur transmitters and mod-
ulators—together with some design notes on how to im-
prove said dynamic characteristics.

Here are two power supplies designed and constructed
in such a way as to not only obtain unusually good dy-
namic regulation but also to keep cost to a minimum. To
fully appreciate these two designs, we suggest you review
the previous article. If you can’t beg or borrow a copy of our
January–February issue (Volume 9, No. 1), drop me a card.

Lighthawg Berry

Contents

Two 250 MA Plate Power Supplies................................. Page 5
Power Control Unit.. Page 6
Sweeping the Spectrum... Page 7
Technical Information—DA-VS................................. Page 8
The dynamic characteristics of the average amateur power supply are those characteristics which become apparent in the operation of the supply when it is in actual use under average operating conditions. In most amateur operations this means rapid intermitent application and removal of widely varying loads.

Meters will not measure the "extensive" voltage drops and peaks which are induced by varying the load— and as a result it has become somewhat conventional to regard such voltage excursions as "instantaneous" and "of little consequence."

However, as demonstrated in the tests reported in the last issue of G.E. EN. NEWS, these voltage excursions are somewhat more serious than is generally believed. The oscillograms showed that when normal load is applied the output voltage will drop to as low as a third of the no-load voltage, while widely overloading the no-load level, drop again, and so on— even in a power supply which has an adequate static regulation circuit.

Instantaneous oscillations? That depends on the definition of the word "instantaneous." As these oscillations were actually photographed on an oscilloscope along with a 60-cycle timing wave, it was shown that the transient oscillations lasted well over a tenth of a second—enough time to completely modulate every CW character and distort at least a fair portion of the first syllable of every phoning-name utterance.

Experiments showed the oscillations were directly related to the resonant frequency of the power supply filter—and that the simplest solution to the problem was to lower the resonant frequency by adding capacity to the filter. It was found that addition of sufficient capacity would smooth out the dynamic regulation curve so that it would nearly coincide with the conventional static regulation curve of the supply.

However, high-voltage oil capacitors cost money— lots of it. In order to economize, at least in the sense of not running these newly designed power supplies a great deal harder in cost than conventional supplies of the same ratings, electrolytic capacitors have been specified in series-parallel combinations together with voltage-equalizing resistors.

Electrolytic capacitors generally are, we believe, better than they are cracked up to be in amateur circles. True, they may not last as long as oil capacitors, but as they have been improved continuously since first introduced, it was felt they were well worth trying. Those who still feel squeamish about using electrolytics may, of course, put in all capacitors of the same value with equally good results. However, it is felt the electrolytics offer more capacity per pound, per dollar.

In obtaining the unusually high capacity via the series-parallel method shown in the circuit diagrams, it is important to make sure that all the equalizing resistors are used. This will assure operation of each capacitor within its voltage rating.

The use of each electrolytic capacitor is its negative terminal connected to the power supply ground. The negative side of the string of the string may be mounted directly on the chassis with the metal shielding brought down as a common ground, supplied with each capacitor. However, the remaining capacitors must be insulated from one another and insulated from the chassis. Careful examination of the circuit diagrams will make this clear.

To provide this insulation a variety of mounting methods will suggest themselves to the builder. The method shown here is to mount capacitors that must be insulated on a piece of testboard which in turn is mounted in a hole of appropriate size cut in the chassis.

In addition, it is strongly recommended that a shield be placed over those capacitors whose ends operate above ground. *This shield is to protect the operator—not the capacitor!* Remember that the use of an electrolytic capacitor is generally thought of, subconsciously, as being grounded. The builder may have
750 v/250 mA Power Supply

S1, S2—SPST toggle switch (preferably power type, 12A)
T1—220-0-220 plate transformer (Stanpar PC-8303)
T2—0.25 v, 5A filament transformer (Stanpar P-6133)
V0, V1—GI-616
L1—20/24 k or 50/350 mA, 80 ohms D-C resistance winding choke (Stanpar C-17201)
L2—20 k, 225 mA smoothing choke (DEL S-31)
C2—125 or 90 mf 6 (Sprague PV-1760 or 1850)
R3—300,000 ohms, 2 w composition
R6—50,000 ohms, 25 w (see text)
P1, P2—110 v pilot lamp
F1—5A slow-blowing fuse
1500 v/250 ma Power Supply

S1, S2—SPST toggle switch (power type, 124)
T1—1790-0-1790 plate transformer (Stancer PT-8314)
T2—2.5 x 5A mufratt transformer (Stancer F-6333)
V1, V2—GL-816
L1—0.01F 6-volt 30/300 ma, 80 ohms D-C resistance swinging choke (Stancer C-1720)
L2, L3—20 H, 225 ma smoothing chokes (UTC S-30)
C1—125 or 99 mfd (16 Sprague TVL-270 or 1850)
R1, R2, R3—100,000 ohms, 2 w composition
R4—100,000 ohms, 20 w (see text)
P1—F—110 v pilot lamp
P2—13A slow-blowing fuse
The danger fresh in his mind while he is constructing the power supply and for a relatively short time thereafter. But will he remember, say, a year from now when he goes to the rig to service some component that none of these cues are well above ground? And will a visitor to the shack—or the junior operator—inquiringly poking around inside the supply, ever know—even after he touches one—that these cues are "hot?"

Take no chances! Time and effort taken now to build a shield for these above-ground cues can save a life in the future. The shields shown were fashioned out of sheets of perspex glassed with ventilation holes. Besides, sheets can be fabricated from almost any type of metal. Hardware cloth is inexpensive, easy to handle and when corner joints are soldered it makes a fairly solid shield.

While the shield capacitors in the 1500-volt supply may seem like a staggering number, this amounts only to a bank of four by four which can occupy as little space as an eighth-inch square. Actually, of course, if all of these have to be insulated from the chassis.

Remember, the more output capacity, the better the dynamic performance of the power supply will be. Careful design and the careful selection of capacitors (Brynsac T1I, 1500, or equivalent). As demonstrated in the previous article, it is difficult to see how one can get too much capacity built into the power supply.

On the other hand, it is important not to overload the inductance, since the static regulation is proportional to the total d-e resistance of the chokes. A word about the fact that 225-millimicrofarad smoothing chokes are here used in 250-millimicrofarad power supplies. In a search for chokes of the lowest possible cost and d-e resistance, the design work proceeded on the assumption that the published rating meant, in effect, that this choke has 20 hours inductance at a 225-millimicrofarad load—and might very likely carry additional current. As a test, three of these chokes were put under continuous 250-millimicrofarad loads for 24 hours with no adverse effects. Few amateurs run their power supplies at the so-called "maximum" ratings, but those who disregard the foregoing wish to put in chokes of higher current rating and are willing to pay the additional cost to do the job properly. The chokes specified in the accompanying circuits were chosen with this in mind—that is, to get as high inductance and as low a d-e resistance as is feasible at the possible cost. If other chokes than those specified are used, the

A word about the bleeder resistors used with such power supplies is in order. The bleeder resistors are used with all possible power supplies. To run the resistors as low as possible, two methods were tried. In the smaller supply, two 100,000 ohms, 30-watt resistors were wired in parallel to obtain the 50,000 ohms required. (While "50,000" ohms were used, they were readily available at the time, 30-watt resistors will serve, of course.) The first method doubles the bleeder rating and provides a much greater safety in the event one of the resistors burns out.

Of course, the larger the resistors, the smaller the wire used in a resistor—and the more prone it is to burn out. Frankly, we prefer the method which employed in the 1500-volt supply—of using two 50,000, 30-watt resistors in series to obtain the 100,000 ohms of resistance necessary in this power supply. This, too, doubles the power rating and provides a smaller wire as feasible.

A multitude of refinements can be made on a power supply, of course—one of the most worth while being a suitable "leak-off" arrangement in the final installation. However, outside of including fuses, switches and pilot lamps in the accompanying circuit diagrams, most of these have been left to the individual builder to include as suits his purpose. In developing the present circuit, of course, the supplies described herein, however, care should be taken to insure proper insulation at all points.

Wire with insulation suitable for the voltage involved should be used not only in the power supply itself, but also in making inter-unit connections to control panel and transmitters. Adequate mechanical strength should be maintained in the mounting of the heavy transformers and chokes. Input and output "connectors" can be of any type suitable for the voltages concerned.

The two switches included in the diagrams permit separate control of the receiver filament and plate power. The first time the supply is used, a filament warm-up of at least one minute is recommended before applying plate power. This will allow the mercury in the GL-816 tubes to distribute itself properly in the plate circuit.

This also applies wherever the tubes are removed and replaced. In subsequent operation, it is necessary to allow at least ten seconds for heating the filaments before applying plate power. The power supply should be operated only when the tubes are in a vertical position.

When operated within ratings, these power supplies should give the builder the most satisfactory performances ever experienced with any power supply.

One more thing: DON'T LOAD THE POWER SUPPLY WITH YOUR MOTORS! Be certain to short-circuit any power source which is not in connection with the supply—or when it is turned to the "OFF" position and even if the lever is locked.

Remember that 100 microfarads of capacity holds a lot of "sting" and a burned-out bleeder will allow dangerous voltages to remain in the filter for a matter of minutes after it is turned off.

NATIONAL CALLING AND EMERGENCY FREQUENCIES

C.W.

"PHONE

3550 kHz 16,050 kc
3875 kc 14,825 kc
7100 kc 21,050 kc
7250 kc 21,400 kc
28,100 kc 29,600 kc

During periods of communications emergency these channels will be monitored for emergency traffic. All radio amateurs are asked to familiarize themselves with these calling frequencies to expedite general traffic movement and to assist in furthering the safety of our fellow citizens. The following are the National Calling and Emergency Frequencies for Canada: cw—3535, 7035, 15,000; phone—3815, 14,100, 28,150 kc.

NATIONAL RTTY CALLING AND WORKING FREQUENCY

3628 kc

PARADISES

In the "Daylight's Corner" of the last issue of Q-E

HARI NEWS (Volume 9, No. 1) the formula for the resonant frequency should, of course, have read:

\[f = \frac{1}{2\pi \sqrt{LC}} \]
The circuit is simple and provides for remote control via the "C" type female outlet on the front of the panel. On the rear of the unit are two rows of AC outlets—both supplying 110-volt a.c. The bottom row of six outlets is controlled by the front panel switch and is used for filament circuits in other pieces of equipment. The top row of outlets is controlled by the same switch plus the relay, and offers 110-volt a.c. for the high-voltage plate transformers of various pieces of equipment.

An interesting feature of the circuit is that the relay coil is connected in the grounded side of the 110-volt a.c. circuit. This method of connecting the coil eliminates any possibility of the relay being actuated if the hot lead in the remote control cable should accidentally become grounded. Incidentally, the relay used here is a double-pole type to provide a wide margin of current-carrying capacity and to halve the possibility of poor contact because of dirt or corrosion. A single-pole relay can be used.

The toggle switch shown is a heavy-duty, double-pole type to insure plenty of current-carrying capacity. The fuses used should be chosen to just carry the total current that will be drawn in their respective circuits. The photographs show the construction clearly. Note that the mounting plates for the various units are overlapped to fit neatly in the chassis. Nothing in the construction is critical and you may play fast and loose with whatever variations are necessary to suit your purpose.

Our section of this article would be an interlock switch in series with the remote control outlet.
While we were working on the power supplies described in this issue, the editor stopped by and made a few comments inspired by our ideas on doubling the bleeder resistors.

"I'll bet a lot of fellows don't realize how dangerous a bleeder resistor can be," he said. "It gives a person a false sense of security, and he forgets or at least never truly realizes that a burned-out bleeder can leave his power supply filter set up like a busted trap—ready to knock the unwary for what might very well be his last loop.

"It may sound corny and trite," he went on. "But write up that safety angle just as strong as you can. I was lucky. I learned the easy way. One time I had borrowed a power supply and in housing it up had occasion to turn it upside-down and work on the output connection. Of course, I shut off the switch and then—purely out of habit—picked up the bleeder driver. I'd developed this habit because I hadn't been burned—not because I was afraid of a burned-out bleeder.

"Well, there was an arc, a big one. I thought nothing of it for a moment. Then I saw the supply had a bleeder and it occurred to me that there shouldn't have been any arc. I checked the bleeder. Sure enough, it was open.

"Before that happened I'd considered the possibility of an open bleeder purely academic, and I'd merely given lip service to safety. But that arc was plenty real and now there—I'll still have here.

"While you're about it, Larry, you might write in a couple more things about safety—about keeping one hand in your pocket when you adjust live equipment... standing on a dry floor... or better, don't adjust live equipment.

"Don't mind if some of the boys say it's old stuff. Spare a few lines of type on a place for safety—and maybe save a life."

So, fellows, when working on these power supplies or anything connected with them, keep a sort of mental red flag going flashes in your mind—a sign that reads: "DANGEROUS—HIGH VOLTAGE."

Beginners often ask: "What should I start out with for a transmitter?" It's a simple question, seemingly, but after a while it comes out that it isn't quite so cut and dried as the fellow who asked the question.

Perhaps the answer is that there is no general answer at all. Checking with the fellows around here shows that it all depends on circumstances what you start out with in ham radio. A few of the lads, presumably

born in a gold mine, began with rather expensive commercially built rigs. At the other extreme are fellows who dismantled old broadcast receivers and built low-power rigs from the parts. Some of the boys started as Jr. GPA's out their system on the old man's discarded B batteries, and apparently had all the necessary parts available to begin to put things together as soon as they were big enough to lift a sanding iron. Then, of course, there's the bunch who started out with a great big zero in the way of either tools or equipment.

And you know, they weren't so bad off in the end because while they were scrapping and saving to buy some tools and parts, they had plenty of time to think things over all, visit other hams and decide what they really wanted—noticed of rushing out and buying, in their ignorance, a whole replaces.

Some fellows more to want a bandswitching rig. But these fellows can be found. A compromise in performance almost always is unavoidable. Also, the chances are high that a good part of the circuitry will never be used to full advantage—that a fair share of the investment will be wasted.

The advice of two of the lads I talked this problem over with is for the beginner to start out on just one band with a small transmitter—perhaps a C rig. They point out that this opens the way to a lot of fun and experience for not too much money. Of course, it is agreed that eventually the beginner who does this will want to try other bands and various types of modulation.

A lot of fellows end up with several small rigs—each for a separate band or mode of operation. And if they are not interested in more than 100 watts, they are very happy. Other fellows sell or swap these few small rigs and go into higher power for keeps.

Everyone I talked to about this problem had agreed on one thing, however: It takes just as much or more time to decide what you want to do, as it does to do it. So you fellows who are worrying because you spend so much time wondering what to build can stop worrying. Your condition is normal. Take your time and plan carefully. It's only money in the end."

First Edition of the WVARA NEWS, published by the Water Valley Amateur Radio Association of Texas (1938). A new [WVAR] newsletter has appeared. It contains news notes of members, a YL section, aColumnName column (in honor of the late Ed Nigg) and a Trading Post section. Congratulations, fellows, on the new bulletin.
SEAM POWER PENTODE

Amateur looking for a power tube with high-current-low-voltage characteristics for use in low-power RF applications may find the 6AV5 of special interest. While designed for use as a horizontal deflection amplifier in TV receivers, it should outperform the 6L6 when properly used as a buffer, multiplier or final amplifier. The tube served excellently as a clamp modulator in the fm transverter described in QST HAM NEWS, Volume 7, No. 1. It is an octal base GT tube with a 6.3 volt a-c or d-c filament drawing 1.5 amperes.

RATING AND CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th>Maximum</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate voltage</td>
<td>550 volts</td>
<td>250 volts</td>
</tr>
<tr>
<td>Screen voltage</td>
<td>200 volts</td>
<td>150 volts</td>
</tr>
<tr>
<td>Control grid voltage</td>
<td>100 volts</td>
<td>12.5 volts</td>
</tr>
<tr>
<td>Plate dissipation</td>
<td>11 watts</td>
<td>—</td>
</tr>
<tr>
<td>Screen dissipation</td>
<td>2.5 watts</td>
<td>—</td>
</tr>
<tr>
<td>Plate current</td>
<td>100 milliamperes</td>
<td>55 milliamperes</td>
</tr>
<tr>
<td>Screen current</td>
<td>—</td>
<td>2.1 milliamperes</td>
</tr>
<tr>
<td>Transconductance</td>
<td>—</td>
<td>5800 microhms</td>
</tr>
</tbody>
</table>